两个矩阵的特征值相等的时候不一定相似,但当这两个矩阵是实对称矩阵时,有相同的特征值必相似。比如当矩阵A与B的特征值相同,A可对角化,但B不可以对角化时,A和B就不相似。当这两个矩阵都是实对称矩阵时,都一定可以对角化,于是有相同的特征值就一定相似。
在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。
判断两个矩阵是否相似的辅助方法:
(1)判断特征值是否相等;
(2)判断行列式是否相等;
(3)判断迹是否相等;
(4)判断秩是否相等。
以上条件可以作为判断矩阵是否相似的必要条件,而非充分条件。
两个矩阵若相似于同一对角矩阵,这两个矩阵相似。
1.a的逆矩阵怎么算