2018新疆高考理科数学试题及答案解析【Word真题试卷】

文/夜满月

 

绝密★启用前

2018年普通高等学校招生全国统一考试

理科数学

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

 

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.

A.                                          B.                                          C.                                          D.

2.已知集合,则中元素的个数为

A.9                                                                      B.8                                                        C.5                                                        D.4

3.函数的图像大致为

4.已知向量满足,则

A.4                                                                      B.3                                                        C.2                                                        D.0

5.双曲线的离心率为,则其渐近线方程为

A.              B.              C.                    D.

6.在中,,则

A.              B.              C.                    D.

7.为计算,设计了右侧的程序框图,则在空白框中应填入

A.

B.

C.

D.

 

 

 

 

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是

   A.                                                        B.                                                        C.                                                        D.

9.在长方体中,,则异面直线所成角的余弦值为

A.                                                        B.                                                        C.                                                        D.

10.若是减函数,则的最大值是

A.                                                        B.                                                        C.                                                        D.

11.已知是定义域为的奇函数,满足.若,则

A.                                                        B.0                                                        C.2                                                        D.50

12.已知是椭圆的左,右焦点,的左顶点,点在过且斜率

的直线上,为等腰三角形,,则的离心率为

A.                                                          B.                                                        C.                                                           D.

二、填空题:本题共4小题,每小题5分,共20分。

13.曲线在点处的切线方程为__________.

14.若满足约束条件的最大值为__________.

15.已知,则__________.

16.已知圆锥的顶点为,母线所成角的余弦值为与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)

为等差数列的前项和,已知

(1)求的通项公式;

(2)求,并求的最小值.

18.(12分)

下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

19.(12分)

设抛物线的焦点为,过且斜率为的直线交于两点,

(1)求的方程;

(2)求过点且与的准线相切的圆的方程.

20.(12分)

如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

21.(12分)

已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为

为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

23.[选修4-5:不等式选讲](10分)

设函数

(1)当时,求不等式的解集;

(2)若,求的取值范围.

 

 

参考答案:

一、选择题

1.D                            2.A                            3.B                            4.B                            5.A                            6.A

7.B                            8.C                            9.C                            10.A                            11.C                            12.D

二、填空题

13.                            14.9                            15.                            16.

三、解答题

17. (12分)

解:(1)设的公差为d,由题意得.

得d=2.

所以的通项公式为.

(2)由(1)得.

所以当n=4时,取得最小值,最小值为−16.

18.(12分)

解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为

(亿元).

利用模型②,该地区2018年的环境基础设施投资额的预测值为

(亿元).

(2)利用模型②得到的预测值更可靠.

理由如下:

(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.

(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.

以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.

19.(12分)

解:(1)由题意得,l的方程为.

.

,故.

所以.

由题设知,解得(舍去),.

因此l的方程为.

(2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即.

设所求圆的圆心坐标为,则

解得

因此所求圆的方程为.

20.(12分)

解:(1)因为的中点,所以,且.

连结.因为,所以为等腰直角三角形,

.

.

平面.

(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.

由已知得取平面的法向量.

,则.

设平面的法向量为.

,可取

所以.由已知得.

所以.解得(舍去),.

所以.又,所以.

所以与平面所成角的正弦值为.

21.(12分)

解析】(1)当时,等价于

设函数,则

时,,所以单调递减.

,故当时,,即

(2)设函数

只有一个零点当且仅当只有一个零点.

(i)当时,没有零点;

(ii)当时,

时,;当时,

所以单调递减,在单调递增.

的最小值.

①若,即没有零点;

②若,即只有一个零点;

③若,即,由于,所以有一个零点,

由(1)知,当时,,所以

有一个零点,因此有两个零点.

综上,只有一个零点时,

22.[选修4-4:坐标系与参数方程](10分)

【解析】(1)曲线的直角坐标方程为

时,的直角坐标方程为

时,的直角坐标方程为

(2)将的参数方程代入的直角坐标方程,整理得关于的方程

.①

因为曲线截直线所得线段的中点内,所以①有两个解,设为,则

又由①得,故,于是直线的斜率

23.[选修4-5:不等式选讲](10分)

【解析】(1)当时,

可得的解集为

(2)等价于

,且当时等号成立.故等价于

可得,所以的取值范围是

 

小编推荐

1.2020年高考注意事项大全

2.高考热点话题预测作文5篇

3.高考热点话题预测材料作文

4.教师张桂梅事迹高考作文材料

5.2022高考写景抒情主题满分作文3篇

6.这才是成熟的模样作文素材高考版

7.这才是成熟的模样高考作文素材2021

8.这才是成熟的模样高考材料作文大全

一键复制全文保存为WORD